Solution
Cross-sectional forces
\begin{aligned} &\sum x=0 \\ &H_{A}=60 k N \\ &\sum M_{A}=5+5 \cdot 5 \cdot 2.5-V_{B} \cdot 5=0 \\ &V_{B}=13.5 k N \\ &\sum y=0 \\ &V_{A}-5 \cdot 5+13.5=0 \\ &V_{A}=11.5 k N \end{aligned}Bending moment function:
\begin{aligned} M(x)=5+11.5 x-\frac{1}{2} \cdot 5 \cdot x^{2} \end{aligned}Checking for extremum:
\begin{aligned} &\frac{d M(x)}{d x}=11.5-5 x \\ &11.5-5 x=0 \Rightarrow x=2.3 \\ &M(0)=5 k N m \\ &M(5)=0 k N m \\ &M_{\text {extr }}(2.3)=5+11.5 \cdot 2.3-2.5 \cdot 2.3^{2}=18.225 k N m \end{aligned}Normal force and bending moment graph

Normal stresses
\begin{aligned} &\sigma_{N}=\frac{N}{A} \\ &A=10 \cdot 50+10 \cdot 70=1200 \mathrm{~cm}^{2} \\ &\sigma_{N}=\frac{-60 \cdot 10^{3}}{1200 \cdot 10^{-4}}=-0.5 \mathrm{MPa} \\ &\sigma_{G}=\frac{M_{y}}{I_{y}} z \end{aligned}Geometric characteristics


If you have any questions, comments, or think you have found a mistake in this solution, please send us a message at kontakt@edupanda.pl.