Solution
Classic version
1. Marking characteristic points and reactions at supports
\begin{aligned} &\sum M_{D}=0 \\ &10 \cdot 8-60 \cdot 5-15+4 V_{B}=0 \\ &V_{B}=58.75 \mathrm{kN} \\ &\sum M_{B}=0 \\ &10 \cdot 4-60 \cdot 1-15-4 V_{D}=0 \\ &V_{D}=-8.75 \mathrm{kN} \\ &\sum Y=0 \\ &V_{B}+V_{D}-60+10=0 \\ &L=P \end{aligned}3. Decomposition of internal force equations in individual variability intervals:
a)Interval AB
\begin{aligned} &Q_{A B}=10-10 \cdot x \\ &Q_{A(0)}=10 \\ &Q_{B(4)}=-30 \\ &M_{A B}=10 \cdot x-10 \cdot \frac{x^{2}}{2} \\ &M_{A(0)}=0 \\ &M_{B(4)}=-40 \end{aligned} \begin{aligned} \\ &Q_{AB}=10-10\cdot x=0\\ &10=10x\\ &x=1m\\ \\ \end{aligned}Extremum
\begin{aligned} \\ &\frac{10}{x}=\frac{30}{4-x} \ \Rightarrow \ x=1\\ &M_{max}=10\cdot 1 – 10\cdot(\frac{1}{2})^{2}=5\\ \\ \end{aligned}b) Interval BC
c) Interval DC
4. Final graphs
If you have any questions, comments, or think you have found a mistake in this solution, please send us a message at kontakt@edupanda.pl.