Solution
Geometric characteristics, central moments of inertia

Figure 1 - larger rectangle, Figure 2 - smaller rectangle
\begin{aligned} a&A_1 =180 cm^2\\ &A_2 =48 cm^2\\ &A=A_1 +A_2=228 cm^2\\ &y_1 =6 cm\\ &y_2 =15 cm\\ &y_c=\frac{y_1 ⋅A_1+ y_2 ⋅A_2}{A_1 +A_2}=7.89 cm\\ \end{aligned}
The force at point D directed "behind the page" (compressive) creates moments Mx and My with the directions shown in the image below (right-hand rule).

Determination of the neutral axis equation
\begin{aligned} &N=-60 kN\\ &M_y=-|N|\cdot 0.075=-4.5 kNm\\ &M_x=-|N|\cdot |(0.12-0.0789)|=-2.466 kNm\\ &\sigma_x=\frac{-60\cdot 10^3}{228\cdot 10^{-4}}-\frac{2.466\cdot 10^3}{5373.37\cdot 10^{-8}}y-\frac{4.5\cdot 10^3}{3631\cdot 10^{-8}}x=0\\ &y=-2.7x-5.7\\ \end{aligned}Two arbitrary points define a straight line (neutral axis).
\begin{aligned} &x=1, y=-8.4\\ &x=-1, y=-3\\ \end{aligned}
Stresses at characteristic points
\(\sigma=\frac{-60\cdot 10^3}{0.023}-\frac{2.466\cdot 10^3}{5373.37\cdot 10^{-8}}y-\frac{4.5\cdot 10^3}{3631\cdot 10^{-8}}x\)Point A (x=-4 cm, y=10.11 cm)
\(\sigma=-2.29 MPa\)Point B (x=4 cm, y=10.11 cm)
\(\sigma=-12.21 MPa\)Point C (x=4 cm, y=(12-7.89) cm)
\(\sigma=-9.45 MPa\)Point D (x=7.5 cm, y=(12-7.89) cm)
\(\sigma=-13.79 MPa\)Point E (x=7.5 cm, y=-7.89 cm)
\(\sigma=-8.28 MPa\)Point F (x=-7.5 cm, y=-7.89 cm)
\(\sigma=10.31 MPa\)Point G (x=-7.5 cm, y=(12-7.89) cm)
\(\sigma=4.8 MPa\)Point H (x=-4 cm, y=(12-7.89) cm)
\(\sigma=0.46 MPa\)Stress block

Core of the section
We mark tangents to the section (in purple), and for each tangent we determine one corner point of the core of the section.

We will use the equation of a line passing through two points:
\begin{aligned} &y-y_1=\frac{y_2-y_1}{x_2-x_1}\cdot (x-x_1)\\ \end{aligned}Neutral axis D-E
\begin{aligned} &a_y=\infty\\ &a_x=7.5 cm\\ &y=-\frac{i_x}{a_y}=0 cm\\ &x=-\frac{i_y}{a_x}=-2.12 cm\\ \end{aligned}Neutral axis E-F
\begin{aligned} &a_y=-7.89 cm\\ &a_x=\infty\\ &y=-\frac{i_x}{a_y}=2.99 cm\\ &x=-\frac{i_y}{a_x}=0 cm\\ \end{aligned}Neutral axis F-G
\begin{aligned} &a_y=\infty\\ &a_x=-7.5 cm\\ &y=-\frac{i_x}{a_y}=0 cm\\ &x=-\frac{i_y}{a_x}=2.12 cm\\ \end{aligned}Neutral axis G-A
\begin{aligned} &y-y_G=\frac{y_A-y_G}{x_A-x_G}\cdot (x-x_G)\\ &x_G=-7.5 cm, y_G=4.11 cm\\ &x_A=-4 cm, y_A=10.11 cm\\ &y=1.71x+16.96\\ &a_y=16.96 cm\\ &a_x=-9.89 cm\\ &y=-\frac{i_x}{a_y}=-1.39 cm\\ &x=-\frac{i_y}{a_x}=1.61 cm\\ \end{aligned}Neutral axis A-B
\begin{aligned} &a_y=10.11 cm\\ &a_x=\infty\\ &y=-\frac{i_x}{a_y}=-2.33 cm\\ &x=-\frac{i_y}{a_x}=0 cm\\ \end{aligned}Neutral axis B-D
\begin{aligned} &x_B=4 cm, y_B=10.11 cm\\ &x_D=7.5 cm, y_D=4.11 cm\\ &y=-1.71x+16.96\\ &a_y=16.96 cm\\ &a_x=9.89 cm\\ &y=-\frac{i_x}{a_y}=-1.39 cm\\ &x=-\frac{i_y}{a_x}=-1.61 cm\\ \end{aligned}Core of the section
