Edupanda » Strength of materials »   Bending   »   Simple Bending   » Example 1

Example 1

Solve the beam and measure the cross-section of the rod, \( k_g = 160 MPa \).

single-task-hero-img

Solution

We encourage you to watch the solution to this example (and others) on our YouTube channel. We explain step by step how to solve this task. Watching this video will also help you understand other examples on our website.
\begin{aligned}\\ &Q(x)=-30+15x\\ &Q(x=0)=-30\ kN\\ &Q(x=6)=60\ kN\\ &Extremum \\ &Q(x)=-30+15x=0\\ &x=2[m]\\ &M(x=0)=30\cdot 6-\frac{1}{2}\cdot 15\cdot 6^2=-90\ kNm\\ &M_{max}(x-2)=30\ kNm\\ &M(x=6)=30\cdot 6-\frac{1}{2}\cdot 15\cdot 6^2=-90\ kNm\\ \end{aligned}

Diagram of shear forces and bending moments

Dimensioning

\begin{aligned}\\ &I_{y_c}=\frac{b*h^3}{12}=\frac{a*(2a)^3}{12}=\frac{2}{3}a^4 \\ &W=\frac{I_{y_c}}{z_{max}}=\frac{\frac{2}{3}a^4}{a}=\frac{2}{3}a^3\\ \end{aligned}

Strength condition

\begin{aligned}\\ &|\frac{M_{max}}{W}|\le k_g\\ &\frac{90*10^3}{\frac{2}{3}a^3}\le 160*10^6\\ &a\ge 0.09449 \ m\\ & a=95\ mm\\ \end{aligned}

Stresses

\begin{aligned}\\ &\sigma=\frac{M}{W}=\frac{90*10^3}{\frac{2}{3}*(0.095)^3}=157.46 \ MPa\\ \end{aligned}