Edupanda » Strength of materials »   Axial Tension and Compression   »   Statically Indeterminate   » Example 1

Example 1

Two-level rod has been permanently fixed at end A, end D, and loaded with forces as shown in the figure. Calculate the reactions at the fixations and indicate in which part of the rod the highest stresses occur. Data: \( A_1=2\cdot A_2, 2\cdot E_1=E_2 \)

single-task-hero-img

Solution

Calculation of reactions
Static equilibrium condition
\begin{aligned} &\sum X=0 \\ &R_{A}+15-20-R_{B}=0 \\ \end{aligned}
Geometric condition
\begin{aligned} &\Delta l_{c}=0 \\ &\Delta l_{A B}+\Delta l_{B C}+\Delta l_{C D}=0 \\ &\Delta l=\frac{N \cdot l}{E \cdot A} \\ \end{aligned} Expanding normal forces on characteristic intervals \begin{aligned} &N_{AB}=R_{A}\\ &N_{BC}=R_{A}+15\\ &N_{CD}=R_{A} + 15 - 20=R_{A} - 5\\ \end{aligned} Solving the geometric condition \begin{aligned} &\frac{R_{A}\cdot 1}{E_{1}\cdot A_{1}}+\frac{(R_{A}+15)\cdot 3}{E_{1}\cdot A_{1}}+\frac{(R_{A}-5)\cdot 3}{E_{2}\cdot A_{2}}=0\\ &\frac{R_{A}}{E_{1}\cdot 2A_{2}}+\frac{3R_{A}+45}{E_{1}\cdot 2A_{2}}+\frac{3R_{A}-15}{2E_{1}\cdot A_{2}}=0 & |\cdot E_{1}\cdot A_{2}\\ &\frac{1}{2}R_{A}+\frac{3}{2}R_{A}+22,5+\frac{3}{2}R_{A}-7,5=0\\ &3,5R_{A}=-15\\ &R_{A}=-4,286 \ kN\\ &R_{A}+15 - 20 - R_{B}=0\\ &R_{B}=-9,286 \ kN\\ \end{aligned} After calculating the reactions RA, the final values of forces on intervals are: \begin{aligned} &N_{AB}=R_{A}=-4,286 \ kN\\ &N_{BC}=R_{A}+15=10,714 \ kN\\ &N_{CD}=R_{A}+15-20=R_{A}-5=-9,286 \ kN \\ \end{aligned} Expanding normal stresses on characteristic intervals \begin{aligned} &\sigma=\frac{N}{A}\\ &\sigma_{AB}=\frac{-4,286}{A_{1}}=\frac{-4,286}{2A_{2}}=-2,143\cdot\frac{1}{A_{2}}\\ &\sigma_{BC}=\frac{10,714}{A_{1}}=\frac{10,714}{2A_{2}}=5,357\cdot\frac{1}{A_{2}}\\ &\sigma_{CD}=\frac{9,286}{A_{2}}=9,286\cdot\frac{1}{A_{2}}\\ \end{aligned} Graphs