- E - moduł Younga,
- J - moment bezwładności przekroju belki względem osi poziomej.
- odcięte we wszystkich przedziałach muszą być mierzone od tego samego punktu
przyjmujemy dla belki prostej jeden układ współrzędnych, nie możemy zapisać np. części funkcji od jednej, a części od drugiej strony belki
- w przypadku działania obciążenia ciągłego nie może ono ulec przerwaniu
o ile taki przypadek zachodzi, to obciążenie ciągłe należy przedłużyć do końca belki, dodając jednocześnie takie samo obciążenie, ze znakiem przeciwnym (kontr-obciążenie)
- wszystkie nowo dochodzące człony w wyrażeniu na moment gnący muszą zawierać czynnik \( (x- l_{i-1}) \),
gdzie:
\(l_{i-1}\) oznacza współrzędną początku i-tego przedziału belki
- w przypadku pojawienia się momentu skupionego M – domnażamy moment przez ramię działania do potęgi 0
- całkowanie należy wykonać bez rozwijania wyrażeń w nawiasach
stałe całkowania obowiązują dla całej belki (dla wszystkich przedziałów)
Jeśli współrzędne \(l_{\mathrm{i}}\) określają położenie sił skupionych \(P_{\mathrm{i}}\)
lub początków obciążenia ciągłego \(q_{\mathrm{i}}\),
to wyrażenia typu \(P_i\left(x-l_i\right)\) lub \(q_i \frac{\left(x-l_i\right)^2}{2}\) całkuje się według schematu
Obliczamy reakcje podporowe
\begin{aligned} &\sum{M_B}=0 -20\cdot 3+30\cdot 1.5+10+15\cdot 6-R_C\cdot 3=0 R_A=28.33kN\\ &\sum{M_C}=0 -20\cdot 6+R_B\cdot 3-30\cdot 1.5+10+15\cdot 3=0 R_B=36.67kN\\ &\sum{P_iY}=0 -20+R_B-30+R_C-15=0 L=P\\ \end{aligned}Zapisujemy funkcję momentu od lewej strony.
Funkcję można też zapisać z prawej strony. Zachęcamy do sprawdzenia tego wariantu, obliczenia szukanego przemieszczenia i porównania wyników.
\begin{aligned} &M_g(x)=-20x+R_B(x-3)-\frac{1}{2}q(x-3)^2+R_C(x-6)+10(x-6)^0+\frac{1}{2}q(x-6)^2\\ &EJ\cdot w"=-M_g(x)=20x-R_B(x-3)+5(x-3)^2- 28.33(x-6)-10(x-6)^0-5(x-6)^2\\ &EJ\cdot w'=20\frac{x^2}{2}-36.67\frac{(x-3)^2}{2}+5\frac{(x-3)^3}{3}-28.33\frac{(x-6)^2}{2}-10(x-6)-5\frac{(x-6)^3}{3}+C\\ &EJ\cdot w=20\frac{x^3}{6}-36.67\frac{(x-3)^3}{6}+5\frac{(x-3)^4}{12}-28.33\frac{(x-6)^3}{6}-10\frac{(x-6)^2}{2}-5\frac{(x-6)^4}{12}+Cx+D\\ \end{aligned}Warunki brzegowe
\begin{aligned} &w(x=3)=0 \Rightarrow 90+3C+D=0\\ &w(x=6)=0 \Rightarrow 588.735+6C+D=0\\ &C=-166,245\\ &D=408.735\\ \end{aligned}Obliczamy ugięcie w punkcie A.
Jeśli układ współrzędnych przyjęliśmy na lewym końcu belki, to punkt A ma współrzędną x=0.
Wobec tego \begin{aligned} &w_A(x=0)=\frac{1}{EI}\cdot (D)\\ \end{aligned} \begin{aligned} &w_A=\frac{1}{EI}\cdot (408.735)\\ \end{aligned}
ZOBACZ TEŻ